李周,男,69年生,中南大學(xué)材料科學(xué)與工程學(xué)院教授、博士生導(dǎo)師;英國(guó)利物浦大學(xué)和德國(guó)亞琛工業(yè)大學(xué)訪問(wèn)學(xué)者、新加坡南洋理工大學(xué)助理研究員。入選國(guó)家“百千萬(wàn)人才工程”,授予“有突出貢獻(xiàn)中青年專家”,“湖南省121創(chuàng)新人才第一層次人選”,享受國(guó)務(wù)院政府特殊津貼。中國(guó)有色金屬學(xué)會(huì)貴金屬委員會(huì)副主任委員。
科研方向
主要研究方向?yàn)楦咝阅茔~合金的設(shè)計(jì)、制備加工、結(jié)構(gòu)表征;電真空用陰極材料和復(fù)合材料。
講授課程
材料結(jié)構(gòu)分析
結(jié)構(gòu)材料的微觀結(jié)構(gòu)設(shè)計(jì)
金屬材料力學(xué)性能的物理理論
學(xué)術(shù)成果
承擔(dān)項(xiàng)目情況
先后主持國(guó)家自然科學(xué)基金重點(diǎn)、面上、國(guó)家重點(diǎn)研發(fā)計(jì)劃、863計(jì)劃、支撐計(jì)劃等項(xiàng)目20余項(xiàng)。相關(guān)研究成果發(fā)表高水平論文200余篇,其中包括國(guó)際著名學(xué)術(shù)刊物:Acta Materials、PRB、Corrosion Science、J. Alloys and Comp、Intermetallic、J. Mater. Res.、Mater. Sci. Eng. A、Material Charact.等.
部分研究成果應(yīng)用情況
[1] 突破了密度控制壓型和固-氣二次還原的高氣密零燒氫膨脹Cu-Al2O3合金短流程制備技術(shù),研制材料已成功應(yīng)用。
[2] 揭示納米粒子原位復(fù)合熱力學(xué)與動(dòng)力學(xué)規(guī)律,發(fā)明易微納加工 Cu-TiB2合金短流程制備技術(shù),研制的合金帶材已成功應(yīng)用。
[3] 發(fā)明了環(huán)保型超高強(qiáng)彈性銅合金及其多尺度結(jié)構(gòu)設(shè)計(jì)與調(diào)控技術(shù)。研制的帶材應(yīng)用于繼電器。
[4] 研發(fā)的CuCrZr系合金非真空上引連鑄技術(shù)獲工業(yè)化應(yīng)用。
[5] 研制的超薄難熔金屬箔材(厚度小于6um)已成功應(yīng)用。
近年來(lái)發(fā)表的部分論文
[1] Gong S, Li Z, Zhao Y Y. An extended Mori–Tanaka model for the elastic moduli of porous materials of finite size[J]. Acta Materialia, 2011, 59(17):6820-6830.
[2] Xiao Z, Li Z, Zhu A, et al. Surface characterization and corrosion behavior of a novel gold-imitation copper alloy with high tarnish resistance in salt spray environment[J]. Corrosion Science, 2013, 76(2):42-51.
[3] Gong S, Wu D, Li Y, et al. Temperature-independent piezoresistive sensors based on carbon nanotube/polymer nanocomposite[J]. Carbon, 2018.
[4] Yue L, Zhou L, Jiang Y, et al. The microstructure evolution and properties of a Cu-Cr-Ag alloy during thermal-mechanical treatment[J]. Journal of Materials Research, 2017, 32(7):1324-1332.
[5] Li Y, Xiao Z, Li Z, et al. Microstructure and properties of a novel Cu-Mg-Ca alloy with high strength and high electrical conductivity[J]. Journal of Alloys & Compounds, 2017, 723.
[6] Yang G, Li Z, Yuan Y, et al. Microstructure, mechanical properties and electrical conductivity of Cu–0.3Mg–0.05Ce alloy processed by equal channel angular pressing and subsequent annealing[J]. Journal of Alloys & Compounds, 2015, 640(2):347-354.
[7] Yuan Y, Li Z, Xiao Z, et al. Microstructure evolution and properties of Cu-Cr alloy during continuous extrusion process[J]. Journal of Alloys & Compounds, 2017, 703:454-460.
[8] Pang Y, Xia C, Wang M, et al. Effects of Zr and (Ni, Si) additions on properties and microstructure of Cu–Cr alloy[J]. Journal of Alloys & Compounds, 2014, 582(5):786-792.
[9] Shen L, Li Z, Dong Q, et al. Microstructure evolution and quench sensitivity of Cu-10Ni-3Al-0.8Si alloy during isothermal treatment[J]. Journal of Materials Research, 2015, 30(5):736-744.
[10] Xiao Z, Fang M, Li Z, et al. Structure and properties of ductile CuAlMn shape memory alloy synthesized by mechanical alloying and powder metallurgy[J]. Materials & Design, 2014, 58(6):451-456.
[11] Shen L, Li Z, Zhang Z, et al. Effects of silicon and thermo-mechanical process on microstructure and properties of Cu–10Ni–3Al–0.8Si alloy[J]. Materials and Design, 2014, 62(62):265-270.
[12] Li X, Li Z, Tao X F, et al. Distribution of residual strain around nanoindentations in silicon[J]. Materials Letters, 2014, 132(10):285-289.
[13] Lei Q, Li Z, Wang J, et al. Hot working behavior of a super high strength Cu–Ni–Si alloy[J]. Materials & Design, 2013, 51:1104-1109.
[14] Lei Q, Li Z, Dai C, et al. Effect of aluminum on microstructure and property of Cu–Ni–Si alloys[J]. Materials Science & Engineering A, 2013, 572(6):65-74.
[15] Chen J L, Li Z, Zhu A Y, et al. Corrosion behavior of novel imitation-gold copper alloy with rare earth in 3.5% NaCl solution[J]. Materials & Design, 2012, 34:618-623.
[16] Liu N, Li Z, Xu G, et al. Effect of tellurium on machinability and mechanical property of CuAlMnZn shape memory alloy[J]. Materials Science & Engineering A, 2011, 528(27):7956-7961.
[17] Xia C, Jia Y, Zhang W, et al. Study of deformation and aging behaviors of a hot rolled–quenched Cu–Cr–Zr–Mg–Si alloy during thermomechanical treatments[J]. Materials & Design, 2012, 39:404-409.
[18] Xia C, Zhang W, Kang Z, et al. High strength and high electrical conductivity Cu–Cr system alloys manufactured by hot rolling–quenching process and thermomechanical treatments[J]. Materials Science & Engineering A, 2012, 538:295-301.
[19] Lei Q, Li Z, Zhu A, et al. The transformation behavior of Cu–8.0Ni–1.8Si–0.6Sn–0.15Mg alloy during isothermal heat treatment[J]. Materials Characterization, 2011, 62(9):904-911.
[20] Lei Q, Li Z, Wang M P, et al. Phase transformations behavior in a Cu–8.0Ni–1.8Si alloy[J]. Journal of Alloys & Compounds, 2011, 509(8):3617-3622.
著作
[1] 李周,汪明樸,徐根應(yīng).《銅基形狀記憶合金材料》(編著),中南大學(xué)出版社,2010
[2] 馬朝利,李周,李華清.《海洋工程有色金屬材料》(編),化學(xué)工業(yè)出版社,2016
[3] 汪明樸,賈延琳,李周.《先進(jìn)高強(qiáng)導(dǎo)電銅合金》(著),中南大學(xué)出版社,2015
[4] 謝水生,李華清,李周.《銅及銅合金產(chǎn)品生產(chǎn)技術(shù)與裝備》(編),中南大學(xué)出版社,2014
學(xué)術(shù)獎(jiǎng)勵(lì)
科技獲獎(jiǎng)情況
獲國(guó)家科技進(jìn)步二等獎(jiǎng)一項(xiàng)、省部級(jí)科技進(jìn)步一等獎(jiǎng)兩項(xiàng)、二等獎(jiǎng)兩項(xiàng)、獲授權(quán)國(guó)家發(fā)明專利30余項(xiàng)。
教學(xué)獲獎(jiǎng)情況
獲國(guó)家教學(xué)成果二等獎(jiǎng)一項(xiàng),省教學(xué)成果一等獎(jiǎng)兩項(xiàng)。